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Introduction

One of the core operations in a ray tracer is finding the (closest) surface 
along a ray. Since this operation is computationally expensive, efficient 
acceleration structures are crucial for high-performance rendering. During 
the history of 3D graphics, enormous amount of research has gone into 
improving the algorithms to construct and traverse them, both on a CPU 
and a GPU. There are several types of data structures, categorized into 
spatial and object hierarchies, such as uniform grids, octrees, k-d trees, 
and bounding volume hierarchies (BVHs). Over the last decade, BVHs 
have attracted increasing attention due to its combination of lower build 
times, predictable memory footprint, efficient incremental rebuilding and 
refitting techniques, and high traversal performance. To the moment, it is 
considered as an optimal choice for many ray tracing applications.

The BVH may be organized as a binary, quad, or k-ary tree. Originally, 
multi-branch BVHs were proposed in order to use (wide) SIMD hardware 
for efficient tracing of a single ray. In comparison with traditional packed 
tracing, it allows to greatly improve performance for incoherent rays. The 
BVH usually has a branching factor equal to the SIMD width. Naturally, 
there were proposed implementations for 4-wide SIMD CPUs using the 
SSE instruction set, such as QBVH (or Quad-BVH) [1] and MBVH [2]–
[4]. More recently, these structures were adapted for AVX instruction set 
[5] and Intel MIC architecture [6]. In general, QBVH/MBVH is a lot faster 
on a CPU (up to 2 times in comparison with 2-ary BVH) and on old AMD 
HD5xxx GPUs (based on VLIW architecture). Nevertheless, on modern 
GPUs these structures do not provide any benefit because of the larger 
stack size and the extra registers used. Therefore, it is widely assumed 
that this kind of structures is mostly useful for CPUs and Xeon Phi.

At the same time, multi-branch BVHs have several advantages that are 
particularly important for GPU ray-tracing. Firstly, it consumes much less 
memory than a regular BVH (~1.5x smaller footprint), and thus allows to 
increase the maximum complexity of 3D models that can be processed 
in-core. Secondly, it reduces branch divergence and optimizes memory 
bandwidth, resulting in higher utilization of GPU's execution units, and 
likely better performance. Thirdly, QBVH has half the height of the binary 
BVH, and thus in theory can be traversed with the stack of half size, that 
can be crucial for complex scenes. To date, however, we have not seen 
such an implementation, although it would be quite interesting.

The goal of this case study is to re-evaluate the feasibility of using the 
QBVH/MBVH acceleration structures for GPU ray tracing by developing 
efficient traversal procedure requiring stack size equal to depth of 4-ary 
tree. Below we present the details of our QBVH implementation.

Construction and Memory Layout

For top-down construction of the QBVH, we use SAH binned builder [7] 
producing regular BVH that is successively collapsing into 4-ary BVH [1]. 
Our traversal procedure exploits the special memory layout of the tree. 
During collapsing, all sibling nodes are placed sequentially. This allows 
to reference any number of child nodes using only two 32-bit integers: ID 
of the first child and the number of sibling nodes (from 2 to 4). Besides 
better compression, this layout also improves cache locality, since child 
nodes are fetched together following during traversal. As for the rest, we 
use classical SoA data layout to access the BVH data on a GPU.

GPU-Optimized Traversal with Minimal Stack Size

Our QBVH traversal implementation uses a stack to store the indices of 
child nodes that are intersected by a ray and are located farther. Each 
stacked node is visited later, when all other near child nodes have been 
processed. However, we place all sibling nodes that should be visited in 
single 32-bit stack entity. Thus, our traversal procedure requires stack of 
half size compared to regular BVH. Because all sidling nodes are placed 
sequentially, it is sufficient to store the ID of the first child and up to three 
offsets (from 0 to 3) of those sibling nodes that should be also visited. In 
our implementation, we use the lower 26 bits to encode the ID of the first 
child, and the remaining 2  3 = 6 bits contain offsets of siblings to visit. 
Each time when the node is fetched from the stack, we extract the next 
offset and shift the entire offset block 2 bits left:

In this way, we should be able to distinguish the case when all siblings 
were processed and the entire 32-bit record should be removed from the 
stack. Since the encoding of offsets requires all possible combinations of 
2 bits, it is impossible to use some kind of terminal element. Instead, we 
can use an observation that the offsets cannot be repeated. Thus, the 
stopping condition is reached when the next offset to be fetched is equal 
to the current one. GLSL-based pseudocode of traversal procedure:
int Pop (inout int head) {

  int data = Stack[head];

  int mask = data >> 26;
  int node = mask & 0x3;

  mask >>= 2;

  if ((mask & 0x3) == node) { // stopping condition
    --head;
  }
  else { // shift offset block 2 bits left 
    Stack[head] = (data & 0x03FFFFFF) | ((mask | (mask << 2) & 0x30) << 26);
  }

  return (data & 0x03FFFFFF) + node;
}

void Traverse() {

  for (int node = root; /* true */;) {

    if (IsInner (node)) {

      vec4 hitTimes; // contains intersection time with each child node or MAXFLOAT
                     // constant if the child was not intersected or does not exist

      ivec4 children = ivec4 (0, 1, 2, 3);  // sort sub-nodes by intersection times

      children.xy = hitTimes.y < hitTimes.x ? children.yx : children.xy;
      hitTimes.xy = hitTimes.y < hitTimes.x ? hitTimes.yx : hitTimes.xy;
      children.zw = hitTimes.w < hitTimes.z ? children.wz : children.zw;
      hitTimes.zw = hitTimes.w < hitTimes.z ? hitTimes.wz : hitTimes.zw;
      children.xz = hitTimes.z < hitTimes.x ? children.zx : children.xz;
      hitTimes.xz = hitTimes.z < hitTimes.x ? hitTimes.zx : hitTimes.xz;
      children.yw = hitTimes.w < hitTimes.y ? children.wy : children.yw;
      hitTimes.yw = hitTimes.w < hitTimes.y ? hitTimes.wy : hitTimes.yw;
      children.yz = hitTimes.z < hitTimes.y ? children.zy : children.yz;
      hitTimes.yz = hitTimes.z < hitTimes.y ? hitTimes.zy : hitTimes.yz;

      if (hitTimes.x != MAXFLOAT) { // if at least one intersected child

        int hitMask = (hitTimes.w != MAXFLOAT ? children.w : children.z) << 2
                    | (hitTimes.z != MAXFLOAT ? children.z : children.y);

        if (hitTimes.y != MAXFLOAT) // if more than one intersected child
          Stack[++head] = FirstChild(node) | (hitMask << 2 | children.y) << 26;

        node = FirstChild(node) + children.x;  // go to the closest child
      }
      else {
        if (head < 0)
          break;

        node = Pop (head);
      }
    }
    else {
      /* process triangles, store intersection, and go to the next node */
    }
  }
}
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Results and Discussion

Our rendering solution is integrated into OpenCASCADE technology, an 
open-source platform for developing CAD/CAM/CAE applications [8]. In 
this case study, all results have been measured using NVIDIA GeForce 
GTX 770 in a 1280  720 rendering window. QBVH provides a speedup, 
compared to regular BVH, of at least 15% in many tested cases for both 
primary and incoherent rays. Also, it requires stack of half size and ~1.3 
times smaller memory footprint. However, our traversal procedure uses 
26 bits for indexing BVH nodes, which results in ~22 millions of nodes 
and ~84 millions of triangles (with 5 triangles per leaf). While it is still 
sufficient for most of in-core scenes, the larger models require increased 
size of stack entity.
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